358

22 Biofunctionalized Nanomaterials for Sensing and Bioremediation of Pollutants

10 Chen, G. and Jiang, M. (2011). Cyclodextrin-based inclusion complexation bridg-

ing supramolecular chemistry and macromolecular self-assembly. Chemical

Society Reviews 40 (5): 2254–2266.

11 Gong, C., Sun, S., Zhang, Y. et al. (2019). Hierarchical nanomaterials via

biomolecular self-assembly and bioinspiration for energy and environmental

applications. Nanoscale 11 (10): 4147–4182.

12 Seeman, N.C. (2010). Nanomaterials based on DNA. Annual Review of

Biochemistry 79: 65–87.

13 Gurunatha, K.L., Fournier, A.C., Urvoas, A. et al. (2016). Nanoparticles

self-assembly driven by high affinity repeat protein pairing. ACS Nano 10 (3):

3176–3185.

14 Atta, A.M., Al-Lohedan, H.A., and Al-Hussain, S.A. (2015). Functionalization of

magnetite nanoparticles as oil spill collector. International Journal of Molecular

Sciences 16 (4): 6911–6931.

15 Mohan, S., Oluwafemi, O.S., Kalarikkal, N. et al. (2016). Biopolymers –

application in nanoscience and nanotechnology. In: Recent Advances in Biopoly-

mers (ed. F.K. Perveen), 47–72. InTech.

16 Daza, E.A., Misra, S.K., Scott, J. et al. (2017). Multi-shell nano-carboscavengers

for petroleum spill remediation. Scientific Reports 7: 1–15.

17 Mirshahghassemi, S., Ebner, A.D., Cai, B., and Lead, J.R. (2017). Application

of high gradient magnetic separation for oil remediation using polymer-coated

magnetic nanoparticles. Separation and Purification Technology 179: 328–334.

18 Konnova, S.A., Lvov, Y.M., and Fakhrullin, R.F. (2016). Nanoshell assembly for

magnet-responsive oil-degrading bacteria. Langmuir 32 (47): 12552–12558.

19 Zainal, Z., Hui, L.K., Hussein, M.Z. et al. (2009). Characterization of

TiO2-chitosan/glass photocatalyst for the removal of a monoazo dye via

photodegradation-adsorption process. Journal of Hazardous Materials 164 (1):

138–145.

20 Nawi, M.A., Sabar, S., Jawad, A.H. et al. (2010). Adsorption of Reactive Red

4 by immobilized chitosan on glass plates: towards the design of immobilized

TiO2-chitosan synergistic photocatalyst-adsorption bilayer system. Biochemical

Engineering Journal 49 (3): 317–325.

21 Wittmar, A., Thierfeld, H., Köcher, S., and Ulbricht, M. (2015). Routes

towards catalytically active TiO2 doped porous cellulose. RSC Advances 5 (45):

35866–35873.

22 Jin, X., Xu, J., Wang, X. et al. (2014). Flexible TiO2/cellulose acetate hybrid film

as a recyclable photocatalyst. RSC Advances 4 (25): 12640–12648.

23 Min, L.L., Zhong, L.B., Zheng, Y.M. et al. (2016). Functionalized chitosan elec-

trospun nanofiber for effective removal of trace arsenate from water. Scientific

Reports 6 (1): 1–12.

24 Seifi, L., Torabian, A., Kazemian, H. et al. (2011). Kinetic study of BTEX removal

using granulated surfactant-modified natural zeolites nanoparticles. Water, Air,

and Soil Pollution 219 (1–4): 443–457.